CATEGORIES

Quick Links



Rekluse Clutch

Official PayPal Seal



Merchant Services



Join our mailing list!





You are here: Home > Brands > VP Racing Fuels
When you crave the most power, best performance and must-have fuel consistency, you need VP Racing Fuels.
Sort By:
Page of 1
VP Racing Utility Jug Replacement Cap
VP Racing Utility Jug Replacement Cap
Retail Price: $9.40

VP Racing Utility Jug Cap
VP Racing Utility Jug Hose
VP Racing Utility Jug Hose (HOSE ONLY)
Retail Price: $12.31

VP Racing Utility Jug Hose
   
 

The Four Key Properties of Fuel

Too often, racers focus only on octane when evaluating the quality of a fuel.  Octane is certainly important, but it’s just one of several key fuel properties that should be considered when evaluating and selecting a fuel.  It’s entirely possible to generate more horsepower with a lower octane fuel if it’s designed properly with respect to its other key properties.  It’s also possible for two fuels to have the same octane rating, but perform very differently due to their other key properties.

1.    OCTANE: Octane is simply a rating of a fuel’s ability to resist detonation and/or preignition. It is not so much an indication of a fuel’s ability to make power, but rather a fuel’s ability to make power safely, i.e., without blowing your engine.  Octane is rated in Research Octane Numbers (RON), Motor Octane Numbers (MON) and Pump Octane Numbers (R+M/2).  A Pump Octane Number is the number you see on the yellow decal at gas stations, representing the average of the fuel’s RON and MON. (See below for a more detailed explanation of how octane numbers are derived and what they represent.)

VP relies on MON numbers because the MON test more accurately simulates racing conditions.  Don't be fooled by high RON or R+M/2 numbers. Many companies use these simply because they look higher and are easier to come by because of the test methods.  Also bear in mind that the ability of fuel to resist detonation is more than just a function of octane.

2.    BURNING SPEED: This is the speed at which fuel releases its energy and is partially  a function of a fuel’s vaporization qualities. At high RPMs, there is very little time (real time - not crank rotation) for the fuel to release its energy. Peak cylinder pressure should occur around 20° ATDC. If the fuel is still burning after this, it’s not contributing to peak cylinder pressure, which is what the rear wheels see. Because VP’s fuels are designed with a particular focus on vaporization characteristics, most of VP’s fuels—oxygenated or nonoxygenated—vaporize much better than comparable competitive fuels.  This means it cools the intake charge, burns faster and yields more efficient combustion. As a result, the “effective” octane rating of VP’s fuels is even higher than the octane test indicates, and they will prevent detonation better than competitive fuels with similar MONs.

3.     ENERGY VALUE: Energy value is an expression of the potential energy in fuel. The energy value is measured in BTUs per pound, not per gallon. The difference is important as the air/fuel ratio is in weight, not volume.  Generally speaking, VP’s fuels measure high in BTUs per pound and thus, have a higher energy value. This higher energy value will have a positive impact on horsepower at any compression ratio or engine speed.

4.    COOLING EFFECT: The cooling effect of fuel is related to the heat of vaporization. The higher a fuel’s heat of vaporization, the better its ability to cool the intake mixture. The superior vaporization characteristics of VP’s fuels make cooling effect one of their key advantages. A better cooling effect can generate some horsepower gains in 4-stroke engines and even bigger gains in 2-stroke engines.  VP’s superior cooling effect can also ensure circle track racers maintain power in the longest races and harshest conditions.  In virtually any application, the cooling effect of VP’s fuels will help extend engine life.

Octane Numbers and What They Represent
One of the most frequently asked technical questions we get at VP involves the difference between Motor, Research and R+M/2 Octane Numbers. The next most frequently asked question is why some fuel companies represent their fuels with Motor Octane Numbers, while other companies use Research or R+M/2 Octane Numbers.

??Realize first that octane is a measurement of a fuel’s ability to resist detonation—nothing more.  The two types of machines used for testing octane—a Motor Octane machine and a Research Octane machine—were designed in the 1930s.  They were designed to test for octane numbers from the 0-100 range, therefore, any number above 100 is an extrapolation.

Both of these machines are dinosaurs and are not adequate for today's high tech fuels or engines, but they’re the only means available for testing fuels. These machines are one-cylinder engines with an adjustable head that can move up or down to increase or lower the compression ratio while the engine is running. The Motor and Research machines are the same in this respect, but they differ in several other characteristics. ?
?
The following is a comparison of the two machines used for testing octane numbers:


RPM
INTAKE TEMP.
TIMING

Motor Octane Machine
900
300 DEGREES F
VARIABLE BASIC
SETTING 26 DEGREES

Research Octane Machine
600
120 DEGREES F
FIXED AT 13 DEGREES?(DOES NOT CHANGE)

As you can see, the Motor Octane machine runs at a higher RPM, higher temperature and more timing. This machine puts more stress on the fuel than a Research machine and more accurately simulates a racing engine. VP Racing Fuels always includes Motor Octane Numbers when promoting its fuels because our fuels are used exclusively for racing applications.

The Research Octane machine will always produce a higher number for the obvious reason that it does not put the same amount of stress on the fuel. This number is used by some fuel companies to trick the racer into thinking the fuel is rated higher, i.e., higher quality, than it really is. The “R+M/2” Octane Number is the average of the Research and Motor Octane numbers for a fuel and is the number displayed with yellow labels on retail level gas pumps.

When comparing fuels for racing purposes make sure to compare Motor Octane Numbers because these are the ones that count in your racing application.
Focusing on the MON of each fuel will help ensure you’re comparing apples to apples with regard to octane.

But bear in mind, a fuel’s ability to prevent detonation is a function of more than just octane.
  For example, VP’s fuels—oxygenated or nonoxygenated—vaporize much better than competitive fuels with comparable octane ratings.  This means VP fuels cool the intake charge, burn faster and yield more efficient combustion. As a result, the “effective” octane rating of VP’s fuels is even higher than the rating generated by the octane test.  As a result, VP fuels will prevent detonation more effectively than competitive fuels with comparable MONs.